Уравнения (42) и (43) позволяют определить угловое расстояние между двумя соседними экстремумами. Действительно, решая совместно, например, уравнения (42), заданные для *m*-ного и *m*+1-ого экстремума, нетрудно получить зависимость

$$(\phi_0)_m^2 - (\phi_0)_{m+1}^2 = (2m+1)\frac{\lambda_0^2}{4d^2}.$$
(45)

Из (45) следует, что угловое расстояние между экстремумами уменьшается с толщиной *d* слоя. Поэтому названное расстояние поставляет достаточную информацию для определения толщины покрытий.

Экспериментально интерференционную картину для отраженного излучения слоя на подложке впервые наблюдал Киссиг [12] и поэтому максимумы и минимумы этой картины называются киссиговскими.

Отражательная способность рассматриваемой системы может быть рассчитана теоретически [Ошибка! Закладка не определена.,13] и определяется отражательной способностью слоя и подложки, или, в конечном счете, величиной угла скольжения j_0 при заданном элементном составе слоя и подложки. Зависимость отражательной способности I / I_0 системы слой-подложка от угла скольжения j_0 представлена на рис.7, взятом из работы [14].

Из рис.7 следует, что отражательная способность быстро падает с ростом угла скольжения. Экстремальные значения, обусловленные интерференцией, существенно отличаются от средней величины, рассчитанной для массивного кобальтового образца.

В случае, рассмотренном на рис.7, подложка является оптически более плотной средой по сравнению с материалом слоя. Но интерференционные максимумы и минимумы Киссига наблюдаются также и при оптически более плотном материале слоя.

Проведенное рассмотрение слоя на подложке позволяет сделать заключение о возможности интерференции рентгеновского излучения при многослойных структурах, состоящих из различных слоев, материал которых изотропен и однороден. Границы раздела слоев предполагаются параллельными друг другу, а также поверхности подложки. Такие слоистые структуры обычно являются последовательностью двойных слоев толщиной d_1 и d_2 с альтернативно низким и высоким коэффициентами преломления n_1 и n_2 . Таким образом, толщина каждого двойного слоя есть сумма $d=d_1+d_2$.

Особенностью периодических многослойных структур является отражение падающего на них рентгеновского излучения по закону Вульфа-Брэгга. Схема отражения для таких структур представлена на

рис.8. (Конечно, реальные углы j_0 , j_1 и j_2 намного меньше представленных на этом рисунке).

Рис.8. Схема отражения рентгеновского излучения от многослойной структуры с периодом d_1+d_2 , нанесенной на подложку.

Усиление интенсивности в результате интерференции происходит, когда различие хода рентгеновских лучей, отраженных от двух соседних плоскостей составит целое число длин волн *1*. При этом условии отражение излучения определяется [15] уравнением

$$2d_1 \sin \varphi_1 + 2d_2 \sin \varphi_2 = m\lambda, \qquad (46)$$

где *m* – произвольное целое число, которое определяет порядок отражения.

Учитывая незначительное различие углов j_0 , j_1 и j_2 , можно приближенно записать условие отражения в привычном виде

$$2(d_1 + d_2)\sin\phi_m \approx m\lambda, \qquad (47)$$

где j_m – усредненный угол скольжения падающего излучения для слоев d_1 и d_2 .

Закон Вульфа - Брэггов (47) также может быть представлен (см. вывод уравнения (42а)) зависимостью

$$\varphi_{\rm m}^2 \approx \left(\varphi_0\right)_{\rm max}^2 + \left(m\frac{\lambda}{2(d_1 + d_2)}\right)^2. \tag{48}$$

Отражения, заданные выражением (48), идентичны максимумам Киссига, определяемым формулой (42а), в которой *n* равно числу *N* двойных слоев многослойной структуры. Так, например, если число двойных слоев равно 15, то максимум отражения Вульфа - Брэггов в 1ом порядке совпадает с 15-м максимумом Киссига, во 2-ом порядке с 30-м максимумом Киссига и т.д. Интенсивность максимума Вульфа-Брэггов примерно на порядок больше интенсивности соответствующего максимума Киссига и обычно уменьшается с увеличением порядка отражения.

5.2. Поля стоячих волн

Интерференция, рассмотренная В предыдущем разделе, предполагает распространение двух и более пучков в одном Однако, интерферировать направлении. могут также пучки, направления которых не совпадают. Если область наложения пучков велика, то наблюдается некоторое волновое поле с результирующими волнами, которые могут оказаться стационарными. В этом случае они называются стоячими волнами с локально устойчивой амплитудой. Локальные минимумы стоячих волн называются узлами, а локальные максимумы – антиузлами.

Наиболее простым случаем получения стоячих волн является суперпозиция широкой падающей и широкой отраженной волны. Для рентгеновского излучения стоячие волны могут, например, возникнуть при его полном внешнем отражении от поверхности. Поле стоячих волн ограничивается здесь в продольном сечении треугольником, образованном поверхностью и фронтами падающей и отраженной волн.

Теоретический расчет интенсивности стоячих волн, равно как и отношения интенсивности падающего и отраженного излучения, может быть осуществлен на основе соотношений Френеля в рамках матричного формализма, предложенного Абелем [16] и достаточно полно рассмотренного в работах [Ошибка! Закладка не определена.,17]. Матричный подход распространяется на случаи отражающей поверхности, слоя на подложке и многослойных структур. Рассмотрим простейший случай отражающей поверхности.

Рассматривая соотношение амплитуд, нормируем амплитуду плоской падающей волны к единице. Отраженная волна под поверхностью материала отсутствует. Поэтому гипотетическую ее амплитуду примем равной нулю. Пусть амплитуда отраженной волны E_0^n , а амплитуда преломленной волны E_s^i . Тогда эти четыре амплитуды связаны Борновской матрицей или матрицей переноса:

$$\begin{bmatrix} 1 \\ E_0^{\nu} \end{bmatrix} = \begin{bmatrix} m_1 m_2 \\ m_3 m_4 \end{bmatrix} \begin{bmatrix} E_s^i \\ 0 \end{bmatrix}$$
(49)

Компоненты матрицы m_1 , m_2 , m_3 и m_4 определяются величинами углов скольжения j_0 и преломления j_1 :

$$m_{1} = m_{4} = \frac{\phi_{0} + \phi_{1}}{2\phi_{0}}$$
$$m_{2} = m_{3} = \frac{\phi_{0} - \phi_{1}}{2\phi_{0}}$$

Амплитуда отраженной волны E_0^n получается из (49) как соотношение компонентов m_3 и m_1 :

$$\mathrm{E}_0^\nu = \frac{\phi_0 - \phi_1}{\phi_0 + \phi_1} \, .$$

Интенсивность стоячих волн представляет собой сумму идущих вниз и идущих вверх плоских волн и зависит от модуля амплитуд падающей и отраженной волны следующим образом:

$$I(\phi_0, z) = I_0 \left[1 + \left| E_0^{\nu} \right|^2 + 2 \left| E_0^{\nu} \right| \cos \left(\frac{2\pi x}{a} - \phi(\phi_0) \right) \right]$$
(50)

где I_0 –интенсивность первичного излучения; a – расстояние между узловой и антиузловой плоскостями; х – расстояние до отражающей поверхности; $f(j_0)$ – сдвиг фаз.

Поскольку амплитуда падающей волны нормирована к единице, то квадрат модуля $|E_0^n|^2$ определяет одновременно отражающую способность $R(j_0)$ для раздела двух сред. Поэтому вместо (6.50) можем записать:

$$I(\phi_0, z) = I_0 \left[1 + R(\phi_0) + 2\sqrt{R(\phi_0)} \cos\left(\frac{2\pi x}{a} - \phi(\phi_0)\right) \right]$$
(51)

Таким образом, интенсивность стоячих волн определяется [18] углом падения j_0 и расстоянием *x* от отражающей поверхности.

Интенсивность узлов и антиузлов соответствует максимумам и минимумам уравнения (51):

$$I_{\max,\min} = I_0 \left[1 + R(\phi_0) \pm 2\sqrt{R(\phi_0)} \right]$$
 (52)

Если принять, что отражающая способность R=100%, то контраст между максимумом и минимумом оказывается: $I_{max} = 4$;

 $I_{min}=0$. Это объясняется тем, что при сложении одинаковых амплитуд падающей и отраженной волны они либо удваиваются (в антиузлах), либо уменьшаются до нуля (в узлах). При этом интенсивности, определяемые как квадрат амплитуды, принимают значения $4I_0$ и 0, соответственно.

Интенсивность преломленной волны экспоненциально уменьшается с глубиной *x* в соответствии с уравнением

$$I(\phi_0, x) = I_0 \left| E_s^i \right|^2 \exp\left(-\frac{x}{x_e}\right)$$
(53)

где x_e – глубина проникновения, определяемая уравнением (35), а амплитуда преломленной волны E_s^i как это следует из матричного уравнения (49), равна величине $\frac{1}{m} = \frac{2\varphi_0}{\varphi_0 + \varphi_1}$. Квадрат этой амплитуды определяет пропускаемость отражающего материала и может быть

выражен через отражательную способность $R(j_0)$. После замены квадрата амплитуды $|E_s^i|^2$ в (53) на отражательную способность, получаем:

$$I(\phi_0, x) = I_0 C(1-R) \frac{\phi_0}{x_e} \exp\left(-\frac{x}{x_e}\right),$$
(54)

где $C = \frac{\lambda}{4\pi} \frac{1}{\beta}$ и β - характеристика поглощающей способности отражающего материала.

Отн.интенсивн.

Рис. 9. Интенсивность выше и ниже поверхности кремния для МоК α - излучения при его падении на поверхность под углом (ϕ_0)_{max} = 0,1⁰.

Рассчитанная по полученным соотношениям зависимость интенсивности МоК α - излучения от расстояния до поверхности и от глубины проникновения для угла $\phi_0 = (\phi_0)_{max}$ представлена на рис.9.

Из рис.6.9 следует, что в рассматриваемом случае первый антиузел совпадает с отражающей поверхностью кремния, узлы над этой поверхностью следуют на расстоянии a = 20 нм, а под поверхностью интенсивность затухает на расстоянии нескольких десятков нанометров. При отражающей способности $R(\phi_{0 max}) = 81,5\%$ антиузлы имеют интенсивность, в 3,6 раза превышающую интенсивность падающего излучения.

При критическом угле $(j_0)_{max}$ период стоячих волн определяется выражением

$$a_{\rm crit} = \frac{\lambda}{2} \frac{1}{\sqrt{2\delta}},\tag{55}$$

то есть не зависит от длины волны отраженного излучения (т.к. декремент d пропорционален квадрату l). Периоды стоячих волн в этом случае для некоторых отражающих поверхностей представлены в табл.5.

Таблица 5.

Зависимость периода стоячих волн a_{crit} при критическом угле падения $(j_0)_{max}$ от материала отражающей поверхности.

Отражающий материал	a _{crit} [нм]
Плексиглас	26,9
Кварцевое стекло	20,3
Кремний	20,0
Медь	10,7
Тантал	8,3
Золото	7,7

При углах, меньших критического, расстояние между узлами увеличивается, и первый антиузел смещается от поверхности. Проникновение в отражающий материал быстро уменьшается (для угла падения $\phi_0 = 0.05^0$ до нескольких нанометров).

Стоячие волны образуются также в случае слоя, нанесенного на массивную подложку. В треугольной области I над поверхностью слоя (см. рис.10) пучки интерферируют, пересекаясь под углом $2j_0$, а в трапециевидной области II – под углом $2j_1$. Излучение, проникшее в подложку (область III), распространяется с уменьшением своей интенсивности. Интерференция двух пучков, отраженных в одном

направлении от поверхностей слоя и подложки (область *IV*), рассмотрена в предыдущем разделе

Теоретические зависимости для интенсивности стоячих волн, а также отраженного и преломленного излучения, получаются в этом случае при использовании двух матричных уравнений типа (49), записанных для внешней поверхности и для поверхности раздела слоя и подложки.

19

- 12. Kiessig H. Ann.d.Phys., 1931, v.10, p.769.
- 13.Roseler A. Infrared Spectroscopic Ellipsometry// Academie-Verlag, Berlin, 1990.
- 14. De Boer D.K.G. and van den Hoogenhof W.W. Adv. X-Ray Anal., 1991, v.34, p.35.
- 15. De Boer D.K.G., Leenaers A.J.G. and van den Hoogenhof W.W.// X-Ray Spectrometry, 1995, v.24, p.91.
- 16. Abeles F.// Ann. Phys. (Paris), 1950,5, p.596, p.706.
- 17. Krol A., Sher C.J. and Kao Y.H.// Phys. Rev., 1988, B38, p.8579.
- 18. Bedzyk M.J., Bommarito G.M., and Schildkraut J.S.// Phys. Rev. Lett., 1989, v.62, p.1376.

¹⁹