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1 Introduction

The covariant description of the spin 3/2 particles is usually based on
the Rarita-Schwinger formalism [1] where the main object is the spin-vector

field W*.

The most general free lagrangian:

L = VAT,
1
A = (p— M)gh + A" +4"p") + 5(3A2 +2A+ 1)y'py” +
M (3A* +3A +1)y"9". (1)

Here A is an arbitrary parameter, p, = 10,,.
This lagrangian is invariant under the point transformation:

A — 2«
1+ 4o

9

U — U = (g" + ayt'y" )T, A= A =

with parameter o« # —1/4.
The lagrangian (1) leads to the following equations of motion:

AP = ). (2)

The free propagator of the Rarita-Schwinger field in a momentum space
obeys the equation:

NG = g, (3)

The expression for the free propagator Gfy” is well known and we do not
present it here.

As concerned for the dressed propagator, its construction is a more com-
plicated issue and its total expression is unknown up to now.

Here we derive an analytical expression for the interacting Rarita-Schwinger
field’s propagator with accounting all spin components and discuss its prop-
erties. It turned out that the spin 1/2 part of the dressed propagator has
rather compact form, and a crucial point for its deriving is the choosing of
a suitable basis. Short variant of this paper was published (A.E. Kaloshin,
V.P. Lomov. Mod.Phys.Lett. A19 (2004) 135).
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2 Dressed propagator of the Rarita-Schwinger field

The Dyson-Schwinger equation for the propagator
G = G + Gre JotGr. (4)

Here Gy” and G" are the free and full propagators respectively, J* is a
self-energy contribution. The equation may be rewritten for inverse propa-
gators as

(G = (G ) = T (5)

If we consider the self-energy J/" as a known value ("rainbow approxima-
tion”, see e.g. recent review[16]), than the problem is reduced to reversing
of relation (5). Tt is useful to have a basis for both propagators and self-
energy.

1. The most natural basis for the spin-tensor S*(p) decomposition is the
y-matrix one:

St (p) =g"" - sy + ph'p” - 59 +
+ pp!'p” - s34+ pgtt - sy 4Py S5+ YPY  s6 +

+ 0 sp+ P - ss + PP sg A+ Y e D - sy

(6)

Here S* is an arbitrary spin-tensor depending on the momentum p,
s;(p*) are the Lorentz invariant coefficients, and o = %[fy/“‘, v"]. Alto-
gether there are ten independent components in the decomposition of
S"(p).

[t is known that the y-matrix decomposition is complete, the coethi-
cients s; are free of kinematical singularities and constraints, and their
calculation is rather simple. However this basis is inconvenient at mul-
tiplication and reversing of the spin-tensor S"”(p) because the basis
elements are not orthogonal to each other. As a result the reversing
of the spin-tensor S"(p) leads to a system of 10 equations for the
coefficients.



2. There is another basis used in consideration of the dressed propagator
[4, 9, 13] G*. Tt is constructed from the following set of operators
[12, 13, 17]

v _ o 20T 1 1 v oo
(PP =gt — Y+ (P = PP,
|

3 p? 3 3p
1 ptp¥ 1 5

(Y'p” —4"p")p,

37 3 2 3
12y P'PY
Py ==
N 3 1 ~ o~ 1
(Py ) = i @(—p’“‘ +9"p)pp”.
PU™ =\ 5 ot (=0 + 7B )
p* 3p?
Let us rewrite the operators (7) to make their properties more obvious:
<7>3/2>W— <7>”2> — (P,

1 o
= =P P (9)
with the following properties:
1
(mp) =0, (yn)=(ry)=1, (nm)==, pr'=—n'p. (10)
3

Here 773/2,73111/2,77212 are the projection operators while 7721 ,73112/2 are

nilpotent. As for their physical meaning, it is clear that P32 corre-
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sponds to spin 3/2. The remaining operators should describe two spin
1/2 representations and transitions between them.

The set of operators (7) can be used to decompose the considered
spin-tensor as following [4, 9]:

S (p) = (Sy+ Sap)(P¥2)™ + (Sy + Sup) Py )™ +
~ 1/2\ uv ~ /2Ny

(S5 + Sp)(Pos )" + (51 + Ssp)(Pol V" +
(S + Swp) (P )" (11)
Let us call this basis as p-basis. It is more convenient at multiplication
since the spin 3/2 components P3/2 have been separated from spin 1 /2
ones. However, the spin 1/2 components as before are not orthogonal
between themselves and we come to a system of 8 equations when
inverting the (5). Another feature of decomposition (11) is existence of

the poles 1/p? in different terms. So to avoid this unphysical singularity,
we should impose some constraints on the coefficients at zero point.

. Let us construct the basis which is the most convenient at multiplica-
tion of spin-tensors. This basis is built from the operators (7) and the
projection operators A

2 A
At VIED (12)
24/ p?
where we assume p> > 0. Ten elements of this basis look as
Pro= ATPYE Py = AP,
ml/2 _ /2
7)3:/\7)117734:/\7)117
ml/2 _ /2
7)5:/\7)2277)6:/\7)227
ml/2 _ /2
7)7:/\7)217738:/\7)217
Py = ATPYE Py = APy (13)

where tensor indices are omitted. We will call (13) as the A-basis.



Decomposition of a spin-tensor in this basis has the following form:

S*(p) = ZP@”V@(}?Q)- (14)

The A-basis has very simple multiplicative properties which are repre-
sented in the Table 1.

Pr. P Ps Pi Ps Ps Pr Ps Py Puo
Pr P O 0 o o0 0 0 0 0 0
Pyl 0 Py 0 o o0 0 0 0 0 0
Ps 10O 0 Py 0 0 0 P 0 O 0
Py 0 0 0O Py 0 0 0 Ps O 0
Ps | 0 0 0 0O P 0 0 0 Py O
Ps| 0 0 0 0 0 Ps 0 0 0 P
P 0 0 0 O 0 P 0 0 0 P
Ps| 0 0 0 0 Ps 0 0 0 Py O
Py | O 0 0O Py 0 0 0 Ps O 0
Pwo| 0 0 Py 0 0 0 P 0 0 0

Table 1: Properties of the A-basis at multiplication.

The first six basis elements are projection operators, while the remain-

ing four elements are nilpotent.

Now we can return to the Dyson-Schwinger equation (5). Let us denote

the inverse dressed propagator (G~1)* and free one (G, ') by S* and
Sy respectively. Decomposing the S*, S§" and J* in A-basis according to
(14) we reduce the equation (5) to set of equations for the scalar coefficients

Si(p*) = Soilp®) + Ji(p°)

So the values S; are defined by the bare propagator and the self-energy and
may be considered as known.

The dressed propagator also can be found in this form

10
G — ZPZW - Gi(p?) (15)
i=1



The existing 6 projection operators take part in the decomposition of ¢"*:

6

g =7 P (16)

i=1
Now solving the equation
GMI/SI/)\ — g/,c)\

in A-basis, we obtain a set of equations for the scalar coefficients G, which
are easy to solve:

~ 1 ~ 1
G, = E, Gy = 57_27 _ ]
%:%,@:%,@:%,%:%,
G?—_A—bfa 68—;—6;87 69—;—6;97 10 = —51107 (17)
where
A = S35 — S7S10, Ay = 5455 — S35. (18)

3 Joint dressing of Dirac fermions

The answer has rather unusual structure, so we would like to clear its
physical meaning before renormalization. First of all it’s useful to consider
the dressing if Dirac fermions with aim to find the close analogy for Rarita-
Schwinger field case.

3.1 Dressing of single Dirac fermion

The dressed fermion G(p) propagator is solution of the Dyson-Schwinger
equation

G(p) = Gy + GXGy. (19)



Let us use the basis of the projection operators but with new notatons
to stress an analogy with the Rarita-Schwinger field.

P =AY, Py=A.

(20)
Decomposition of any matrix, depending on p :

2
S(p) =Y PuS".
M=1

(21)
Dyson-Schwinger equation in this basis takes the form:
GM = GY + GMSMGH,

M=1,2,
and its solution is:

(22)

(G = (G =2 (23)
In more detail:
(G_le)—l — (G_(Z)\/lzl)—l . iM:l
(GM:Z)—l — (G(Z)V[:Z)—l . SM:Z

—my — A(p*) + V/p?(1 = B(p)).
= —my — A(p®) — VP2 (1 = Bp)).

where A, B are the conventional components of the self-energy
S(p) = A(p®) + pB(p*) = ATE" + 7T,
S = A+ +/p?B. 2= A—+/p?B.
Standard procedure of renormalization consist in formal expansion G~ (p)

in terms of p — m and choosing the renormalization constants to fulfill the
condition

G (p) = p— m+ ofp— m).

With using of the projection operators basis one needs to renormalize
the scalar functions GY, depending on the argument £ = +/p?.

Let us consider the (G 1)~ component (recall that the bare contribution
s (Gl =

—myg—++/p?) and require its expansion in terms on (1/p? —m)
to be:

(G_l)_l = \/E—m#—o(\/ﬁ—m)
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As a result we have the dressed renormalized propagator G(p), which co-
incides with the standard expression.

Let us look at the self-energy contribution ¥(p). As an example we shall
consider the dressing of barion resonance N’ (J¥ = 1/2%) due to interac-
tion with m/N system. Interaction lagrangian is of the form

Liw = g0 (2)y°U(z) - p(x) + h.c. for N =1/2F (24)

and
Liw = gU (2)U(z) - ¢(x) + h.c. for N =1/2". (25)
k
1+, 1t gy’ "7 ey
7 Y79 YA
p+k
d'k 1 1
S(p) = ig* — 5 — T A(p?) + HB(1
(p) ZQ/(%)Nerk_vakg_m% (r°) +pB(p)
(26)
Calculate the loop discontinuity through the Landau-Cutkosky rule:
. 2 . 2 2 2 2
A= N Aap= W P TIN T E oy
(27)? (27)? 2p?

Here Iy is the base integral

o= [ 31 = )5 {(p -+ 17 — k) = 50067 — (o + ) L,

L 4bc, ¢ is the momentum of 7 /N pair in

where )\(a, b, c) = (a —b— c)
CMS.

From the parity conservation one can see that in the transition N'(1/2%) —
N(1/27)4x(07) the 7 N pair has the orbital momentum [ = 1. But accord-
ing to threshold quantum-mechanical theorems [19], the imaginary part of

2[+1

a loop should behave as ¢ at ¢ — 0, which does not correspond to (27).
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Imaginary part of &M component according to (27)
Im = Im (A++/p?B) ~ q°,
ImY? = Im (A—+/p*B) ~q. (28)

One can see that ,,alive” component ¥! demonstrates the proper threshold
behavior.

k
1 1— igl " gl
7 73 YA
p+k
S(p) = igg/ Tk = TAG) 9B
2m)' bt p—my K —m3 7
2 22 2 2
A= I  Ap= W p PN T
(27)? (27)? 2p?
Imaginary parts of £12 now demonstrate [ = 0 behavior
2
3 9~ 1Lo / 2 2 1
]mElz— [ p2‘|‘mN _mW]NQ7
4/ p?(2m)? ( )

_ 27
Im 2 = J 0 (\/pQ—mN—mﬁ)(\/pQ—mN—I—mﬁ)ng.
4/ p?(2m)?
The considered examples show that only an ,.alive“ component ', which
has the pole 1 / (\/ P2 — m) demonstrates the proper threshold behavior
(i.e. the proper parity). Another component £*, which has pole of the form

1 / ( — \/ﬁ — m) demonstrates the opposite parity.

3.2 Dressing of Dirac fermion with parity violation

Let us consider dressing of the Dirac fermion in case of parity violation.
Such situation arises for instance in case of the t-quark dressing. In this case
the Dyson-Schwinger equation has the previous form but the self-energy
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contribution ¥ has the parity violating terms.
S(p) = A(p®) +pB(p°) +°C(p°) +py" D(p°). (29)
[t is convinient to use the following four operators as a basis:
Pi=A" Py=A", Py=ATY, Pi=ATy. (30)

P| 2 are projection operators, while P34 are nilpotent ones. The decompo-

sition of any y-matpunsl, depending on p, now is of the form (compaire
with (21))

S(p) =Y _ PM3V. (31)

This set of operators has simple multiplicative properties (see Table 2).

Pr P2 Ps Py
PPt 0 P30
Pl 0 Py 0 Py
Pl 0 Py 0 P
Pi|Ps 0 Py 0

Table 2: Multiplicative properties of the operators (41)

Let us denote by S(p) and Sy(p) the dressed and bare inverse propagators
respectively. The Dyson-Schwinger equation with accounting (42) reduces
to

Y = (5)"

—SM M =1,....4

so the components S may be considered as known and we came to prob-
lem of reversing of known matrix S(p):

( 24: PuGY) (24: PLS) =P+ P (32)
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After multiplication we obtain set of equations in GV
G'S'+G*St =1
G252+ G5 = 1

L o 33
Glsi’) + G352 — 0 ( )
GiS 1G5 =),
which are easy to solve. Answer is:
S LS S - S
Gi=—, Gy=—, Gyg=—F Gy=—— 34
1 A ) 2 A ) 3 A ) 4 A ) ( )

rme A = Slgg — §3»§4.

This example is similar to dressing of the Rarita-Schwinger field by its
algebraical structure (compare Tables 1, 2) but it has too small degrees of
freedom.

3.3 Joint dressing of two fermions of the same parity

Let we have two bare fermion states N’,N”, which are dressing with pres-
ence of mutual transitions. Suppose that these states have the same parity
and there is no parity violation in lagrangian. Now the Dyson-Schwinger
equation will have the martix indexes

i

Gz] - (G()) j + lezkl (G())lja i7j7 ka = 17 2. (35)

Every element here has not shown y-matrix indexes.
With using of the projection operators basis (21), we will reduce the
equation (40) to independent equations for components Py, Po:

(M) = (G");+ (@) (B) (&), M =12 (30)

i ]

Let us rewrite the Eq. (36) in matrix form

GM =G) + GMEMGY, M =1,2, (37)
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and write down 1ts solution

_ -1 _ — —1
G = [<G(])w>_1 _SM]_l B ( <Géw>n_M_E% ‘M_—El{\g M) -
—) (Go )22 — Iy
_ L (@), - S
By aos )
S (ComEH I [ R B
(38)

Now let us calculate the loop contributions ¥;; for considered in above
7w N intermediate state. For dressing of two states N', N” of the same parity
the self energy coinsides with (26), (28) except the coupling constants.

4
ZZ:’LQZQ/ ik 75 Al 75 : fOTNlaNuzl/Q—l_a
g Tt pk—m ' kP —m?

d*k 1 1
i = 1G;0; ~ N N'=1/2".
J Zgg]/(27)4]§—|—k—mk2—m72r fOT s /
(39)

The threshold behavior of imaginary parts for dressing of two fermions
(39) is similar to case of a single fermion, considered in previous section.

3.4 Joint dressing of two fermions of different parity

Let us consider the nearest analogy to the Rarita-Schwinger field: the
joint dressing of two fermions of different parity 1/2%.
Now the Dyson-Schwinger equation has matrix form

Gi; = (Gy) ; +Gik2kl(G0)U, i ik l=1,2. (40)

i
The basis contains four operators:

7)1 — A+7 7)2 — A_7 7)3 — A+757 7)4 — A_757 (41)
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where Pj o are projection operators and Ps4 are the nilpotent ones. De-
composition of any y-matrix, depending on p, now is of the form
4

S(p) =Y _ PY3Y. (42)

M=1

The Dyson-Schwinger equation (40) reduces to the matrix equations:

G151 + G35, = Es,
G252 + G453 = LB,

(43)
G153 + G35 = 0,
G451+ G5, =0,
where B 1s the unit matrix 2 x 2. Solutions:
B ~1
G = [S1-8(%)7"s]
1 —1
Gy =[S —su(51) '8
(44)

1,178 1
Gy =—|S1 = S5(52) 81| 85(%:) 7"

Gi= =% = $4($1) 7' 5] ARG

Now let us concretize these general formulae. Suppose that we have two
fermions of different parity, but there is no parity violation in lagrangian.
It means that the diagonal loops contain only the I and p

@ T~

?

while the non-diagonal ones have -y

@ T~ Py fori#

Decomposition of inverse propagator in this basis has the form

—my + E — 2 0
Sip) = P 1 ! )

5
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g — B — % 0
+ P i i (2)
0 —my — E -3

0 0 —xW
+ 7)3 (3) 12 + 7)4 (4) 12 .
— s 0 — X5, 0

Substituting all into solution (44), we have the dressed propagator

B ENTE
G =A" A1 A~ Ay
0 —mi—E-%% * 0 —mi+E-%}) +
Ay Aq
3 4
iy 0 i
_ﬁ 0 _ﬁ 0
Ay Aq
(45)

Here
Ar=(—m+E—-S})(—my— E—X3) —S),55,
Np=(=m—E—-3})(—me+E—-3) —SL5, =4 (F = —E).

The appearance of nilpotent operators in decomposition (45) is an indi-
cation for transitions between states of different parity.
Let us summarize our consideration of the dressing of Dirac fermions.

1) We found very convenient the using of the projection operators AT =

(\/ p? + ]5) / 24/ p? for solving of Dyson-Schwinger equation especially

in case of few dressing states.

2) AT are very useful in another aspect: its coefficients have the definite
parity. But as one can see from the loop calculations (28), (3.1) the
components AT have different parity. There is such correspondence:
the parity of the field W is the parity of ,alive” component AT, which
has the pole 1 / E — m). Another component A~ which has the pole

/ — F — m) demonstrates the opposite parity.
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3) In contrast to boson case, even if the interactions conserve the parity,
the loop transitions between different parity states are not zero: they
are proportional to nilpotent operator PP = 0. AT~°.

4) The joint dressing of two fermions without parity violation in vertex
has different picture in dependence of parities of dressing states. One
can illustrate it in the following scheme:

JF=1/22 & JP=1/2% JP=1/2¢ & JP=1/27

AT — AT AT — A~
A~ — A~ A~ — AT

4 Spin-parity of the Rarita-Schwinger field

Compairing Tables 1 and 2, one can conclude that presence of the nilpo-
tent operators P;—Pyg in decomposition (15) is an indication on the tran-
sitions between components of different parity 1/2*. To make sure in this
conclusion, we can calculate loop contributions in propagator. As an exam-
ple we will take the interaction lagrangian 7/ NA

Lint = gana U M(x)(g’“”’ + 29"y (z) - O, ¢p(x) + h.c. . (46)

Here 7 is so-called "off-shell” parameter.
The one-loop self-energy contribution is

poot P
VWM MW
p+k

4
JW():_Z'2 dk(u0+zu0)k0 1
p 9rNA (27’[’)4 g T

|
Mg + 2y)

—_— —_—. 4
p+k—mn k* —m2 (47)

Let us calculate the discontinuity of loop contribution in p basis (11).

Kis

. m
AJ; = _192[0%)‘(57 m]2\77 m2)7
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AJ,y

AJs

AJy

AJs

AJsg

AJ;

AJs

AJy
AJio

—ig*los—— (s + my —m7)A,

242
—ngI()@()\ + 62X — 3622m?2s),
12s

[(s +ma — m2)XN + 1228\ + 362°5(s° — mis — 2mars — m2ma +my)],

Kis

—ig"lo 9452

ngIO%[(S —mi A+ m2)? 4 22(s — mi + m2)? + 427 m2s],

1
i o5y = m2)(s = my 2P+ Azs(s = md £ m2)(s =k —m?) +
4223(32 — mfr

s = 2mpys —momy + my)l,

3 1
igzlo\/j- g[(s —ma A+ mI)A + 4zs(257 —mis — dmiys + 2my — mamZ —m?t) +
s s
12223(32 — mfrs — Zm]?vs — m?vmfr + m?\,)],
3
—ingo\/j- 'Z?—N[(Sz +4m2s — 2mas +mt — 2mPm2 4+ m?) 4+ 62sm?],
s s
AJ;
~AJs. (48)

Here Iy is the base integral (3.1), A(a, b, ¢) = (a — b — ¢) — 4be, arguments

of A are the same in all expressions, but are indicated only in first one.

We saw in above that in case of Dirac fermions the propagator decompo-

sition in basis of projection operators demonstrates the definite parity. We

can expect the similar property for Rarita-Schwinger field in A-basis. Let

us verify it by calculating the threshold behavior of imaginary part. Using

(48), one can convince yourself that

AJ, = AJi+ EAS ~ ¢°
Ay, = AJ, — EAJy ~ ¢°
AJy = AJy+ EAJ, ~ ¢°
AJ; = AJ;— EAJy ~ g
AJs = AJs+ EAJs ~ g
AJs = Ay — EAJs ~ ¢, (49)

Such behavior indicates that the components .J;, J» exhibit the spin-parity
3/2%, while the pairs of coefficient J3,.J; and J5, Js correspond to 1/27F
1/2~ contributions respectively.
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5

In conclusion:

e We obtained the general analytical expression (17) for the interacting

Rarita-Schwinger field propagator which accounts for all spin compo-
nents.

The obtained dressed propagator (17) solves an algebraic part of the
problem, the following step is renormalization. Note that the investi-
gation of dressed propagator is the alternative for more conventional
method based on equations of motion (see, 7.e. Ref. [18] and references
therein).

We found that the nearest analogy for dressing of the s = 1/2 sector is
the joint dressing of two Dirac fermions of different parity. Caculation
of the self-energy contributions in case of A isobar confirms that in the
Rarita-Schwinger field besides the leading s = 3/2 contribution there
are also two s = 1/2 components of different parity.

We suppose that such an approach is the more adequate for description
of data on A production.

18



References

[1] W. Rarita and J. Schwinger. Phys. Rev. 60 (1941) 61.

2] K. Johnson and E. C. G. Sudarshan. Ann. Phys. (N.Y.) 13 (1961)
126

3] G. Velo and D. Zwanzinger. Phys. Rev. 186 (1969) 267, 1337

4] C. L. Korpa. Heavy lon Phys. 5 (1997) 77.

[5] V. Pascalutsa. Phys. Rev. D58 (1998) 096002.

6] V. Pascalutsa. Phys. Lett. B503 (2001) 86

7] G. Lopez Castro and A. Mariano. Phys. Lett. B517 (2001) 339
8] M. Kirchbach and D. V. Ahluwalia. Phys. Lett B529 (2002) 124
9]

9] A. N. Almaliev, I. V. Kopytin and M. A. Shehalev. J. Phys. G. 28
(2002) 233

[10] A. Aurilia, H. Umezava. Phys. Rev. 182 (1969) 1686
[11] L. M. Nath,B. Etemadi and J. D. Kimel. Phys. Rev. D3 (1971) 2153

[12] M. Benmerrouche, R. M. Davidson and N. C. Mukhopadhyay. Phys.
Rev. C39 (1989) 2339.

[13] V. Pascalutsa and O. Scholten. Nuc. Phys. A591 (1995) 658

[14] A.E. Kaloshin and V.P. Lomov. Mod. Phys.Lett. A19 (2004) 135
[15] S. Kondratyuk and O. Scholten. Phys. Rev. C62 (2000) 025203
[16] P. Maris and C. D. Roberts. Int. J. Mod. Phys. E12 (2003) 297
[17] P. van Nieuwenhuizen. Phys. Rep. 68 (1981) 189

[18] V. Pascalutsa and R. Timmermans. Phys. Rev. C60 (1999) 042201
[19] A.I.Baz’.Ya.B.Zeldovich, A.M.Perelomov. Rasseyanie, reakzii i ras-

pady v nerelyativitskoi kvantovoi mehanike. Nauka, 1971.

19



