Пионная амплитуда распределения в КХД

А. П. Бакулев

ЛТФ им. Н. Н. Боголюбова, ОИЯИ (Дубна, Россия)

- Стандартная Модель и КХД: где кварки, где лептоны?
- **•** КХД: кварки внутри, адроны снаружи! Как быть?
- Факторизация, пионная амплитуда распределения (*π*DA), ее эволюция в пертурбативной КХД (pQCD)
- Правила сумм КХД: как можно изучать адроны в непертурбативной КХД (npQCD).
- Правила сумм КХД с нелокальными конденсатами (НЛК) для πDA

Contents, 2-nd part

- Чем плохо наивное pQCD-описание формфактора $F^{\gamma\gamma^*\pi}(Q^2)$ или зачем нужны КХД-правила сумм на световом конусе (LCSR)?
- QCD LCSR: обработка эксперимента CLEO по $F^{\gamma\gamma^*\pi}(Q^2) \Rightarrow$ и ограничения на π DA
- Сравнение npQCD и pQCD: что это дает для π DA?
- Данные Е-791 по дифракционному *π* + *A*-рождению 2 струй и *π*АР
- Данные CEBAF по электромагнитному формфактору пиона и πAP
- Перспективы и задачи

Standard Model:

Leptons,

Bosons

Standard Model

Частицы Стандартной Модели: *i* = 1, 2, 3 и *a* = 1, ...8 — цветовые индексы кварков и глюонов.

КХД + Электрослабая физика Цель этой лекции — понять на примере описания пиона, как в КХД рассчитываются свойства адронов и их реакции.

QCD: Lagrangian, quarks and gluons

Калибровочно-инвариантный лагранжиан КХД

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,...} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$
(1)

содержит только поля глюонов $(G^a_{\mu\nu}(x))$ и кварков $(\psi_q(x))$. Эти поля имеют цветовые степени свободы: 3 у кварков $\psi^A_q(x)$ (A = 1, 2, 3) и 8 у глюонов $G^a_{\mu\nu}(x)$ $(a = 1, \dots, 8)$. Взаимодействие спрятано в ковариантной производной D^{AB}_{μ}

QCD: Lagrangian, quarks and gluons

Калибровочно-инвариантный лагранжиан КХД

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,...} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$
(1)

содержит только поля глюонов $(G^a_{\mu\nu}(x))$ и кварков $(\psi_q(x))$. Эти поля имеют цветовые степени свободы: 3 у кварков $\psi^A_q(x)$ (A = 1, 2, 3) и 8 у глюонов $G^a_{\mu\nu}(x)$ (a = 1, ..., 8). Взаимодействие спрятано в ковариантной производной D^{AB}_{μ}

$$D^{AB}_{\mu} = \partial_{\mu} - ig_s (t^a)^{AB} A^a_{\mu}$$
$$G^a_{\mu\nu} = \partial_{\mu}A^a_{\nu} - \partial_{\nu}A^a_{\mu} + g_s f^{abc} A^b_{\mu}A^c_{\nu}$$

Оно нелинейно за счет неабелевости ($f^{abc} \neq 0$).

Quarks inside, Hadrons outside, What one can do?

Неабелевость КХД приводит к заряженным (цветным) глюонам. Отсюда – конфайнмент!

QCD: Quarks masses

Uр-кварки	u	С	t
масса	$1.5 \div 4.5$ МэВ	1.0÷1.4 ГэВ	174.3 ± 5.1 ГэВ
Down-кварки	d	S	b
масса	5.0÷8.5 МэВ	80÷155 МэВ	4.0÷4.5 ГэВ

Пока мы интересуемся физикой обычных адронов, построенных из *u*- и *d*-кварков, массами кварков можно пренебречь: $\frac{m_{u,d}}{m_{\rho}} \lesssim 1\%$. Адронный масштаб масс задан массой ρ -мезона ($m_{\rho} = 770$ МэВ).

QCD: Quarks masses

Uр-кварки	u	С	t
масса	$1.5 \div 4.5$ МэВ	1.0÷1.4 ГэВ	174.3 ± 5.1 ГэВ
Down-кварки	d	S	b
масса	5.0÷8.5 МэВ	80÷155 МэВ	4.0÷4.5 ГэВ

Пока мы интересуемся физикой обычных адронов, построенных из *u*- и *d*-кварков, массами кварков можно пренебречь: $\frac{m_{u,d}}{m_{\rho}} \leq 1\%$. Адронный масштаб масс задан массой ρ -мезона ($m_{\rho} = 770 \text{ МэВ}$). Безмассовая КХД: лагранжиан (1) с суммированием по q = u, d и с $m_u = m_d = 0$. Есть SU(2)-симметрия $u \rightleftharpoons d$ – изоспиновая симметрия. Она нарушается при учете электромагнитных поправок и масс кварков.

Massless QCD: What are Hadrons?

PS- и V-мезоны из <i>u</i> - и <i>d</i> -кварков			
тип мезона	PS	V	
состав	$\pi^0[\bar{u}u-\bar{d}d],\ \pi^\pm[\bar{u}d,\bar{d}u]$	$ ho^0(\omega)[ar{u}u-ar{d}d],\ ho^\pm[ar{u}d,ar{d}u]$	
масса	140 МэВ	770(780) МэВ	

Massless QCD: What are Hadrons?

PS- и V-мезоны из <i>u</i> - и <i>d</i> -кварков			
тип мезона	PS	V	
состав	$\pi^0[\bar{u}u-\bar{d}d], \ \pi^{\pm}[\bar{u}d,\bar{d}u]$	$ ho^0(\omega)[\bar{u}u-\bar{d}d],\ ho^{\pm}[\bar{u}d,\bar{d}u]$	
масса	140 МэВ	770(780) МэВ	

Барионы из <i>u</i> - и <i>d</i> -кварков			
состав	p[uud]	n[udd]	$\Delta^{++}[uuu], \Delta^{+}[uud],$
			$\Delta^0[udd], \ \Delta^-[ddd]$
масса	938 МэВ	939 МэВ	1232 МэВ

Pion DA: Properties and Evolution in pQCD

Factorization for $\gamma^*\gamma^* \to \pi^0$ form factor

Виртуальные фотоны γ^* "цепляются" за электромагнитные токи, $J_{\mu} = e_d \bar{d} \gamma_{\mu} d + e_u \bar{u} \gamma_{\mu} u$, кварков в пионе $\pi^0 = \frac{\bar{u}u - \bar{d}d}{\sqrt{2}}$ (forward). В жестком процессе виртуальности фотонов $-q_1^2, -q_2^2 \gg m_{\rho}^2$.

Кинематика процесса

$$P = q_1 + q_2; \qquad q = (q_1 - q_2)/2; \qquad Q_i^2 \equiv -q_i^2$$
$$P^2 = m_\pi^2 \approx 0; \qquad Q^2 \equiv -q^2 = (Q_1^2 + Q_2^2)/2 \gg m_\rho^2$$

Amplitude (T) and form factor(F)

$$T(q_1, \varepsilon_1; q_2, \varepsilon_2) = \int dz^D e^{-iq_1 z} \langle 0 | \varepsilon_1^{\mu} J_{\mu}(z) \varepsilon_2^{\nu} J_{\nu}(0) | \pi(P) \rangle$$

$$\equiv -i \varepsilon_{\mu\nu\rho\sigma} \varepsilon_1^{\mu} \varepsilon_2^{\nu} P^{\rho} q^{\sigma} F_{\gamma^*\gamma^* \to \pi^0}(q_1^2, q_2^2)$$

Вычисляем в представлении взаимодействия:

$$T_{\mu\nu}(q_1; q_2) = \int dz^D e^{-iq_1 z} \langle 0 | J_{\mu}(z) J_{\nu}(0) \hat{\mathbf{S}} | \pi(P) \rangle$$

$$= \dots \sum_f e_f^2 \bar{\psi}_f(z) \gamma_{\mu} \psi_f(z) \bar{\psi}_f(0) \gamma_{\nu} \psi_f(0) \dots$$

$$= \dots \sum_f e_f^2 \bar{\psi}_f(z) \left[\gamma_{\mu} i \hat{S}(z) \gamma_{\nu} \right] \psi_f(0) \dots$$

Тождество ($\varepsilon_{0123} = +1$): $\left| \gamma_{\mu} \hat{z} \gamma_{\nu} = S_{\mu z \nu \alpha} \gamma^{\alpha} + i \varepsilon_{\mu z \nu \alpha} \gamma^{\alpha} \gamma_{5} \right|$

Appearance of the pion DA $\varphi_{\pi}(x)$

$$T_{\mu\nu}(q_1;q_2) \sim \int dz^D e^{-iq_1 z} \left(\frac{z^\beta}{z^4}\right) \sum_f e_f^2 \langle \underbrace{0|\bar{\psi}_f(z)\gamma_\alpha\gamma_5\psi_f(0)|\pi(P)}_f \rangle$$

Появился новый объект — *п*DA

Appearance of the pion DA $\varphi_{\pi}(x)$

$$T_{\mu\nu}(q_1;q_2) \sim \int dz^D e^{-iq_1 z} \left(\frac{z^{\beta}}{z^4}\right) \sum_f e_f^2 \langle 0 | \bar{\psi}_f(z) \gamma_{\alpha} \gamma_5 \psi_f(0) | \pi(P)$$

Появился новый объект — πDA . Этот объект
содержит в себе всю непертурбативную информацию о
пионе: все, что мы не можем вычислить в теории

возмущений, убрано в него. Параметризация (back):

$$\langle 0 \mid \overline{d}(z)\gamma_{\alpha}\gamma_{5}d(0) \mid \pi(P) \rangle = \frac{1}{\sqrt{2}} \langle 0 \mid \overline{d}(z)\gamma_{\alpha}\gamma_{5}u(0) \mid \pi(P) \rangle$$

$$= \frac{if_{\pi}P_{\alpha}}{\sqrt{2}} \int_{0}^{1} dx \ e^{ix(zP)} \left[\varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2}) + z^{2}g_{1}^{\operatorname{Tw-4}}(x,\mu^{2}) \right]$$

Вклады ведущего и высшего твистов разделены.

Twists and light-cone singularities

Чем важно разделение сингулярностей по z^2 ?

$$T_{\mu\nu}(q_1;q_2) \sim \varepsilon_{\mu\nu\alpha\beta}P^{\alpha} \int_0^1 dx \int dz^D e^{-i(q_1-xP)z} \\ \left[\frac{z^{\beta}}{z^4}\varphi_{\pi}^{\mathsf{Tw-2}}(x,\mu^2) + \frac{z^{\beta}}{z^2}g_1^{\mathsf{Tw-4}}(x,\mu^2)\right]$$

Тем, что мы можем сразу определить ведущий вклад и его асимптотику при больших Q^2 . Действительно ($D = 4 - 2\varepsilon$):

$$\frac{z^{\beta}}{z^{4}} \stackrel{\text{Фурье}}{\Rightarrow} \frac{(q_{1} - xP)^{\beta}}{(q_{1} - xP)^{2}}; \qquad \frac{z^{\beta}}{z^{2}} \stackrel{\text{Фурье}}{\Rightarrow} 4 \frac{(q_{1} - xP)^{\beta}}{(q_{1} - xP)^{4}}$$

Кусок с q_1^{β} даст структуру формфакора $\varepsilon_{\mu\nu\alpha\beta}P^{\alpha}q_1^{\beta}$. А что будет с куском $\sim xP$ из числителя?

Fourier transform in D dimensions

Для $D = 4 - 2\varepsilon$:

$$i \int \frac{e^{-iqz} dz^D}{(-z^2 + i0)^n} = \frac{\Gamma(D/2 - n)}{\Gamma(n)} \frac{2^{D-2n} \pi^{D/2}}{(-q^2 - i0)^{D/2 - n}}$$
$$\frac{-i}{(2\pi)^D} \int \frac{e^{iqz} dq^D}{(-q^2 - i0)^n} = \frac{\Gamma(D/2 - n)}{\Gamma(n)} \frac{2^{-2n} \pi^{-D/2}}{(-z^2 + i0)^{D/2 - n}}$$

Задача для любознательных: показать, что оба преобразования согласуются друг с другом.

Factorization for $\gamma^*\gamma^* \to \pi^0$ form factor

Результат для формфактора перехода $\gamma^*\gamma^* \to \pi$: $(q_1 - xP)^2 = \bar{x}Q_1^2 + xQ_2^2$

Здесь $\delta^2_{\text{Tw-4}}$ – масштаб вклада твиста 4

Factorization: general scheme

Формфактор перехода $\gamma^* \gamma^* \to \pi$: разделение малых и больших расстояний

=
$$C(q_1^2, q_2^2; \mu^2; x) \otimes \varphi_{\pi}(x; \mu^2) + O(\frac{\delta_{\text{Tw-4}}^2}{Q^4})$$

Здесь $\delta_{\text{Tw-4}}^2$ – масштаб вклада твиста 4

00

Factorization: general scheme

Factorization: general scheme

Factorization: general properties of πDA

Итак, что же такое $\pi DA \ \varphi_{\pi}(x,\mu^2)$ ведущего твиста 2?

она описывает матричный элемент нелокального аксиального тока на световом конусе

$$D \mid \left[\bar{d}(z) \gamma_{\alpha} \gamma_{5} E(z,0) u(0) \right]_{\mu^{2}} \mid \pi(P) \rangle \Big|_{z^{2}=0} = if_{\pi} P_{\alpha} \int_{0}^{1} dx \ e^{ix(zP)} \ \varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2})$$

Factorization: general properties of πDA

Итак, что же такое $\pi DA \ \varphi_{\pi}(x,\mu^2)$ ведущего твиста 2?

она описывает матричный элемент нелокального аксиального тока на световом конусе

$$0 \mid \left[\bar{d}(z) \gamma_{\alpha} \gamma_{5} E(z,0) u(0) \right]_{\mu^{2}} \mid \pi(P) \rangle \Big|_{z^{2}=0} = if_{\pi} P_{\alpha} \int_{0}^{1} dx \ e^{ix(zP)} \ \varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2})$$

 она калибровочно-инвариантна за счет струны Фока-Швингера:

$$E(z,0) = \mathcal{P}e^{ig\int_0^z A_\mu(\tau)d\tau^\mu}$$

Factorization: general properties of πDA

Итак, что же такое $\pi DA \ \varphi_{\pi}(x,\mu^2)$ ведущего твиста 2?

она описывает матричный элемент нелокального аксиального тока на световом конусе

$$0 \mid \left[\bar{d}(z) \gamma_{\alpha} \gamma_{5} E(z,0) u(0) \right]_{\mu^{2}} \mid \pi(P) \rangle \Big|_{z^{2}=0} = if_{\pi} P_{\alpha} \int_{0}^{1} dx \ e^{ix(zP)} \ \varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2})$$

• она калибровочно-инвариантна за счет струны Фока-Швингера:

$$E(z,0) = \mathcal{P}e^{ig\int_0^z A_\mu(\tau)d\tau^\mu}$$

В твисте 4 имеется 6 различных π DA, четыре имееют значение для анализа $F_{\gamma^*\gamma^* \to \pi^0}(Q_1^2, Q_2^2)$.

Factorization: Physical interpretation of πDA

Factorization: Physical interpretation of πDA

- мультипликативно перенормируема
 [Ефремов-Радюшкин; Бродский-Лепаж, (ЕРБЛ)]
- асимптотическая πDA в 1-петлевом приближении: $\varphi_{\pi}(x; \mu^2 \to \infty) = \varphi^{As}(x) = 6x(1-x)$

Factorization: Evolution of πDA in pQCD

 $\varphi_{\pi}(x; \mu^2)$ зависит от масштаба μ^2 . Эта зависимость полностью определяется в pQCD уравнением ЕРБЛ:

$$\frac{d \varphi_{\pi}(x; \mu^2)}{d \ln \mu^2} = V(x, u; \alpha_s(\mu^2)) \bigotimes_u \varphi_{\pi}(u; \mu^2)$$
$$V(x, u; \alpha_s) = \left(\frac{\alpha_s}{4\pi}\right) V_0(x, u) + \left(\frac{\alpha_s}{4\pi}\right)^2 V_1(x, u) + \dots$$

Factorization: Evolution of πDA in pQCD

 $\varphi_{\pi}(x; \mu^2)$ зависит от масштаба μ^2 . Эта зависимость полностью определяется в pQCD уравнением ЕРБЛ:

$$\frac{d\varphi_{\pi}(x;\mu^2)}{d\ln\mu^2} = V(x,u;\alpha_s(\mu^2)) \bigotimes_u \varphi_{\pi}(u;\mu^2)$$
$$V(x,u;\alpha_s) = \left(\frac{\alpha_s}{4\pi}\right) V_0(x,u) + \left(\frac{\alpha_s}{4\pi}\right)^2 V_1(x,u) + .$$

Решение ЕРБЛ: $\varphi_{\pi}(x;\mu^2) = \varphi^{As}(x) \times \\ \times \left[1 + a_2(\mu^2)C_2^{3/2}(\xi) + a_4(\mu^2)C_4^{3/2}(\xi) + ...\right]_{\xi \equiv 2x-1}$ где $C_n^{3/2}(\xi)$ – полиномы Гегенбауера (собственные функции 1-петлевого ядра ЕРБЛэволюции).

Factorization: Evolution of πDA in pQCD

При этом вся μ^2 -зависимость переходит в коэффициенты:

$$\varphi_{\pi}(x;\mu^2) \Leftrightarrow \left\{a_2(\mu^2),a_4(\mu^2),\ldots\right\},$$

причем в 1-петлевом приближении

$$a_n^{1-\text{loop}}(\mu^2) = a_n(\mu_0^2) \left[\frac{\alpha_s(\mu^2)}{\alpha_s(\mu_0^2)}\right]^{\gamma_0(n)/(2b_0)}$$

где $\gamma_0(n)$ – аномальные размерности, определяемые собственными значениями 1-петлевого ядра эволюции V_0 , а b_0 – первый коэффициент разложения бета-функции КХД:

$$\beta\left(\alpha_s(Q^2)\right) \equiv \frac{d\alpha_s\left(\mu^2\right)}{d\ln(\mu^2)} = -\frac{\alpha_s^2\left(\mu^2\right)}{4\pi} \left[b_0 + b_1\frac{\alpha_s\left(\mu^2\right)}{4\pi} + \dots\right]$$

Hadron Properties in Nonperturbative QCD

QCD Sum Rules: Hadrons in npQCD

Проблема: как описывать связанные состояния в КХД?

QCD Sum Rules: Hadrons in npQCD

Проблема: как описывать связанные состояния в КХД? Метод правил сумм КХД позволяет рассчитывать характеристики адронных состояний (массы, распадные константы, магнитные моменты), но ничего не говорит о самом процессе связывания кварков в адрон (адронизация, конфайнмент).
QCD Sum Rules: Hadrons in npQCD

Проблема: как описывать связанные состояния в КХД? Метод правил сумм КХД позволяет рассчитывать характеристики адронных состояний (массы, распадные константы, магнитные моменты), но ничего не говорит о самом процессе связывания кварков в адрон (адронизация, конфайнмент). Предложен в 1977 г. Шифманом, Вайнштейном и Захаровым (ИТЭФ) для описания спектра состояний J/ψ -частицы, содержащей c-кварк и открытой в 1974 г. на e^+e^- -коллайдере SPEAR (SLAC) (параллельно была открыта и в *p* + *Be*-взаимодействиях в BNL). В 1979 г. применен для описания легких адронов в безмассовой KXД.

QCD Sum Rules: Hadrons in npQCD

Проблема: как описывать связанные состояния в КХД? Метод правил сумм КХД позволяет рассчитывать характеристики адронных состояний (массы, распадные константы, магнитные моменты), но ничего не говорит о самом процессе связывания кварков в адрон (адронизация, конфайнмент). Предложен в 1977 г. Шифманом, Вайнштейном и Захаровым (ИТЭФ) для описания спектра состояний J/ψ -частицы, содержащей c-кварк и открытой в 1974 г. на e^+e^- -коллайдере SPEAR (SLAC) (параллельно была открыта и в *p* + *Be*-взаимодействиях в BNL). В 1979 г. применен для описания легких адронов в безмассовой KXД.

Основная идея: посчитать корреляторы адронных токов $\langle 0|T[J_1(x)J_2(0)]|0 \rangle$ двумя способами. Правило сумм – результат согласования.

QCD Sum Rules: general scheme

Коррелятор адронных токов берется в дисперсионном представлении

$$F_{x \to q} \left[\langle 0 | T \left[J_1(x) J_2(0) \right] | 0 \rangle \right] \left(Q^2 \right) \equiv \Pi \left(Q^2 \right) = \frac{1}{\pi} \int_0^\infty \frac{\rho_{12}(s) \, ds}{s + Q^2}$$

после чего к нему применяют преобразование Бореля:

$$B_{Q^2 \to M^2} \left[\Pi(Q^2) \right] \equiv \Phi\left(M^2\right) = \frac{1}{\pi} \int_0^\infty \rho_{12}\left(s\right) e^{-s/M^2} \frac{ds}{M^2} \,,$$

которое "давит" вклады высших состояний и способствует улучшению качества правил сумм. Кроме того, оно уничтожает все вычитания в дисперсионном представлении.

QCD Sum Rules: general scheme

1-ый способ: операторное разложение с учетом наличия конденсатов кварковых и глюонных полей в КХД-вакууме

$$\Phi\left(Q^{2}\right) = \Phi_{\text{pert}}\left(Q^{2}\right) + c_{GG}\left\langle\frac{\alpha_{s}}{\pi}G^{a}_{\mu\nu}G^{a\mu\nu}\right\rangle + c_{\bar{q}q}\left\langle\alpha_{s}\left\langle\bar{q}q\right\rangle^{2}\right)$$

Здесь $\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu} \rangle = 0.012 \ \Gamma \mathfrak{g} B^4$, $\alpha_s \langle \bar{q}q \rangle^2 = 0.0018 \ \Gamma \mathfrak{g} B^6$.

2-ой способ: феноменологическое насыщение спектральной плотности адронными состояниями

$$\rho_{\text{had}}\left(s\right) = f_{h}^{2}\delta\left(s - m_{h}^{2}\right) + \rho_{\text{pert}}\left(s\right)\theta\left(s - s_{0}\right)$$

в виде модели основное состояние h+continuum, который начинается с порога $s = s_0$.

QCD Sum Rules: general scheme

Вопрос: Почему вклад континуума моделируют с помощью пертурбативной спектральной плотности? Ответ: у нас имеется строгое соотношение между кварковой и адронной спектральными плотностями при $M^2 \to \infty$ (когда все степенные поправки обращаются в 0)

$$\int_{0}^{\infty} \rho_{\text{pert}}(s) ds = \int_{0}^{\infty} \rho_{\text{had}}(s) ds \,,$$

оно-то и дает нам право говорить о спектральной дуальности кварков и адронов при больших *s*.

QCD Sum Rules: pion decay constant

Рассмотрим коррелятор аксиальных токов

 $J_{\alpha 5}^{\dagger}(x) = \bar{d}(x)\gamma_{\alpha}\gamma_{5}u(x) \quad \mathbf{i} \quad J_{\beta 5}(0) = \bar{u}(0)\gamma_{\beta}\gamma_{5}d(0).$

Пионная константа распада определяется матричным элементом

$$\langle 0 \mid \left[\bar{d}(0)\gamma_{\alpha}\gamma_{5}u(0) \right] \mid \pi(P) \rangle = if_{\pi}P_{\alpha},$$

так что получается следующее правило сумм

$$f_{\pi}^{2} = \frac{M^{2}}{4\pi^{2}} \left(1 - e^{-s_{0}/M^{2}}\right) \left[1 + \frac{\alpha_{s}}{\pi}\right] + \frac{\langle \frac{\alpha_{s}}{\pi}GG \rangle}{12M^{2}} + \frac{176}{81} \frac{\pi \alpha_{s} \langle \bar{q}q \rangle^{2}}{M^{4}}$$

Оно дает хорошую стабильность при $s_{0} \approx 0.7$ ГэВ².

QCD Sum Rules: pion decay constant

Вариация правой части ПС в области $M^2 \in [0.7; 1.2]$ ГэВ²:

дает значение $f_{\pi} = 0.133 \pm 0.07$ ГэВ, которое следует сравнить с $f_{\pi}^{\exp} = 0.131$ ГэВ.

Nonlocal QCD vacuum and Pion DA

Nonlocal QCD vacuum and QCD Sum Rules

Для описания статических характеристик (m_M , f_M ...) мезонов ($M = \rho, \omega, \pi$...) достаточно небольшого знания о структуре вакуума:

$$\langle \frac{\alpha_s}{\pi} : GG : \rangle \simeq 0.012 \ \Gamma \mathfrak{s} \mathbb{B}^4, \ \langle : \bar{q}q : \rangle \simeq -(250 \ \mathbb{M} \mathfrak{s} \mathbb{B})^3$$

Nonlocal QCD vacuum and QCD Sum Rules

Для описания распределений (AP) кварков в мезонах необходим учет нелокальности конденсатов в вакууме КХД:

Как показывают оценки в рамках ПС КХД конденсаты $\langle: \bar{\mathbf{q}}(\mathbf{0}) \mathbf{E}(\mathbf{0}, \mathbf{z}) \mathbf{q}(\mathbf{z}) : \rangle$ меняются на расстояниях порядка $1/\lambda_q \simeq 0.3 \, \Phi$ м. Эта длина очень близка к типичному адронному масштабу $1/m_\rho \simeq 0.25 \, \Phi$ м.

NLC from Lattice QCD

• Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$

- Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

$$\lambda_q^2 = \begin{cases} 0.4 \pm 0.1 \text{ GeV}^2 & [\text{ QCD SRs, 1987 }] \\ 0.5 \pm 0.05 \text{ GeV}^2 & [\text{ QCD SRs, 1991 }] \\ \approx 0.4 - 0.5 \text{ GeV}^2 & [\text{ Lattice, 1998-2002 }] \end{cases}$$

- Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

$$\lambda_q^2 = \begin{cases} 0.4 \pm 0.1 \text{ GeV}^2 & [\text{ QCD SRs, 1987 }] \\ 0.5 \pm 0.05 \text{ GeV}^2 & [\text{ QCD SRs, 1991 }] \\ \approx 0.4 - 0.5 \text{ GeV}^2 & [\text{ Lattice, 1998-2002 }] \end{cases}$$

• Correlation length $\lambda_q^{-1} \simeq 0.3$ Fm $\sim \rho$ -meson size

- Illustration of NLC-model: $\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}(0)q(0) \rangle e^{-|z^2|\lambda_q^2/8}$
- A single scale parameter $\lambda_q^2 = \langle k^2 \rangle$ characterizing the average momentum of quarks in QCD vacuum:

$$\lambda_q^2 = \begin{cases} 0.4 \pm 0.1 \text{ GeV}^2 & [\text{ QCD SRs, 1987 }] \\ 0.5 \pm 0.05 \text{ GeV}^2 & [\text{ QCD SRs, 1991 }] \\ \approx 0.4 - 0.5 \text{ GeV}^2 & [\text{ Lattice, 1998-2002 }] \end{cases}$$

- Correlation length $\lambda_q^{-1} \simeq 0.3$ Fm $\sim \rho$ -meson size
- Possible to include second ($\Lambda \simeq 450$ MeV) scale with $\langle \bar{q}(0)q(z) \rangle \Big|_{|z|\gg 1 \text{ Fm}} \sim \langle \bar{q}(0)q(0) \rangle e^{-|z|\Lambda}$ (not included here)

NLC SRs for pion DA $\varphi_{\pi}(x)$

Moments
$$\langle \xi^N \rangle_{\pi} = \int_0^1 \varphi_{\pi}(x) (2x-1)^N dx$$
 at $\mu^2 \approx 1 \text{ GeV}^2$

These $\langle \xi^N \rangle_{\pi}$ values allow one to **restore** DA $\varphi_{\pi}(x)$

NLC SRs for pion DA $\varphi_{\pi}(x)$

Independent direct estimate of the inverse moment $\langle x^{-1} \rangle_{\pi}^{\text{SR}} = \int_{0}^{1} \varphi_{\pi}(x) \frac{dx}{x}$ at $\mu^{2} \approx 1 \text{ GeV}^{2}$

NLC Sum Rules for πDA

produce **bunch** of self-consistent 2-parameter models $\varphi_{\pi}(x)$ at $\mu^2 \simeq 1 \text{ GeV}^2$:

$$\varphi_{\pi}(x) = \varphi^{\mathrm{as}}(x) \left[1 + a_2 C_2^{3/2}(\xi) + a_4 C_4^{3/2}(\xi) \right]_{\xi \equiv 2x - 1}$$

NLC SR Constraints on a_2, a_4 of pion DA $\varphi_{\pi}(a_4)$

From QCD theory

Chernyak&Zhitnitsky model (1982–84)

From QCD theory

- Chernyak&Zhitnitsky model (1982–84)
- NLC QCD SRs: BMR (1986-95), BM (1996-00), BMS (2001-03)

From QCD theory

- Chernyak&Zhitnitsky model (1982–84)
- NLC QCD SRs: BMR (1986-95), BM (1996-00), BMS (2001-03)
- Instanton-induced models: Petrov et al. (1999), Dorokhov et al. (2000), Praszalowicz et al. (2001-02)

From QCD theory

- Chernyak&Zhitnitsky model (1982–84)
- NLC QCD SRs: BMR (1986-95), BM (1996-00), BMS (2001-03)
- Instanton-induced models: Petrov et al. (1999), Dorokhov et al. (2000), Praszalowicz et al. (2001-02)
- Lattice: Dalley (2000-01), Burkardt&Seal (2001), del Debbio et al. (2000)

From QCD theory

- Chernyak&Zhitnitsky model (1982–84)
- NLC QCD SRs: BMR (1986-95), BM (1996-00), BMS (2001-03)
- Instanton-induced models: Petrov et al. (1999), Dorokhov et al. (2000), Praszalowicz et al. (2001-02)
- Lattice: Dalley (2000-01), Burkardt&Seal (2001), del Debbio et al. (2000)

New possibility: Use CLEO data (1998) within Light-Cone SR approach to extract constraints on a_2 and a_4 [Khodjamirian (1999), Schmedding&Yakovlev (2000), BMS (2001-03)]

NLO Light-Cone SRs \Rightarrow **CLEO data on** $F_{\gamma\gamma^*\pi}(Q^2) \Rightarrow$ **Constraints on** $\varphi_{\pi}(x)$

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

For $Q^2 \gg m_{\rho}^2$, $q^2 \ll m_{\rho}^2$ pQCD factorization valid only in leading twist and higher twists are of importance [Radyushkin–Ruskov, NPB (1996)]. Reason: if $q^2 \rightarrow 0$ one needs to take into account interaction of real photon at long distances of order of $O(1/\sqrt{q^2})$

pQCD is OK

LCSR should be applied

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

For $Q^2 \gg m_\rho^2$, $q^2 \ll m_\rho^2$ pQCD factorization valid only in leading twist and higher twists are of importance [Radyushkin–Ruskov, NPB (1996)]. Reason: if $q^2 \rightarrow 0$ one needs to take into account interaction of real photon at long distances of order of $O(1/\sqrt{q^2})$

To account for long-distance effects in pQCD one needs to introduce light-cone DA of real photon

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

For $Q^2 \gg m_\rho^2$, $q^2 \ll m_\rho^2$ pQCD factorization valid only in leading twist and higher twists are of importance [Radyushkin–Ruskov, NPB (1996)]. Reason: if $q^2 \rightarrow 0$ one needs to take into account interaction of real photon at long distances of order of $O(1/\sqrt{q^2})$

$\gamma^* \gamma \rightarrow \pi$: Light-Cone Sum Rules!

Khodjamirian [EJPC (1999)]: LCSR effectively accounts for long-distances effects of real photon using quark-hadron duality in vector channel and dispersion relation in q^2

$$F_{\gamma\gamma^*\pi}(Q^2, q^2) = \frac{1}{\pi} \int_0^{s_0} \frac{\mathrm{Im} F_{\gamma^*\gamma^*\pi}^{\mathrm{PT}}(Q^2, s)}{m_{\rho}^2 + q^2} \exp\left[\frac{m_{\rho}^2 - s}{M^2}\right] ds + \frac{1}{\pi} \int_{s_0}^{\infty} \frac{\mathrm{Im} F_{\gamma^*\gamma^*\pi}^{\mathrm{PT}}(Q^2, s)}{s + q^2} ds$$

 $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter (0.5 – 0.9 GeV²). **Real-photon limit q²** \rightarrow **0 can be easily done ...**

$\gamma^* \gamma \rightarrow \pi$: Light-Cone Sum Rules!

Khodjamirian [EJPC (1999)]: LCSR effectively accounts for long-distances effects of real photon using quark-hadron duality in vector channel and dispersion relation in q^2

$$F_{\gamma\gamma^*\pi}(Q^2,0) = \frac{1}{\pi} \int_0^{s_0} \frac{\operatorname{Im} F_{\gamma^*\gamma^*\pi}^{\operatorname{PT}}(Q^2,s)}{m_{\rho}^2} \exp\left[\frac{m_{\rho}^2-s}{M^2}\right] ds$$
$$+ \frac{1}{\pi} \int_{s_0}^{\infty} \frac{\operatorname{Im} F_{\gamma^*\gamma^*\pi}^{\operatorname{PT}}(Q^2,s)}{s} ds$$

 $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter (0.5 – 0.9 GeV²). ... as demonstrated here.

• Accurate NLO evolution for both $\varphi(x, Q_{\exp}^2)$ and $\alpha_s(Q_{\exp}^2)$, taking into account quark thresholds

- Accurate NLO evolution for both $\varphi(x, Q_{\exp}^2)$ and $\alpha_s(Q_{\exp}^2)$, taking into account quark thresholds
- The relation between "nonlocality"scale and twist-4 magnitude $\delta_{\text{Tw-4}}^2 \approx \lambda_q^2/2$ was used to re-estimate $\delta_{\text{Tw-4}}^2 = 0.19 \pm 0.02$ at $\lambda_q^2 = 0.4 \text{ GeV}^2$

- Accurate NLO evolution for both $\varphi(x, Q_{\exp}^2)$ and $\alpha_s(Q_{\exp}^2)$, taking into account quark thresholds
- The relation between "nonlocality"scale and twist-4 magnitude $\delta_{\text{Tw-4}}^2 \approx \lambda_q^2/2$ was used to re-estimate $\delta_{\text{Tw-4}}^2 = 0.19 \pm 0.02$ at $\lambda_q^2 = 0.4 \text{ GeV}^2$
- New procedure of data processing to disentangle the statistical and theoretical uncertainties

- Accurate NLO evolution for both $\varphi(x, Q_{\exp}^2)$ and $\alpha_s(Q_{\exp}^2)$, taking into account quark thresholds
- The relation between "nonlocality"scale and twist-4 magnitude $\delta_{\text{Tw-4}}^2 \approx \lambda_q^2/2$ was used to re-estimate $\delta_{\text{Tw-4}}^2 = 0.19 \pm 0.02$ at $\lambda_q^2 = 0.4 \text{ GeV}^2$
- New procedure of data processing to disentangle the statistical and theoretical uncertainties
- Constraints on $\langle x^{-1} \rangle_{\pi}$ from CLEO data

NLC SR Results vs NLO CLEO Constraints

[BMS, PRD (2003)]

No agreement with CLEO data for $\lambda_q^2 = 0.6 \text{ GeV}^2$

NLC SR Results vs NLO CLEO Constraints

[BMS, PRD (2003)]

Bad agreement with CLEO data for $\lambda_{q}^{2} = 0.5 \text{ GeV}^{2}$
NLC SR Results vs NLO CLEO Constraints

[BMS, PRD (2003)]

NLC SR Results vs Revised CLEO Constrain

NLO Light-Cone SR \oplus Twist-4 $\oplus(\mu^2 = Q^2)$ BMS [PLB 578 (2004) 91]: $\lambda_q^2 = 0.4 \text{ GeV}^2$, $\delta_{\text{Tw-4}}^2 = 0.19(4) \text{ GeV}^2$

NLC SR Results vs Revised CLEO Constrain

NLO Light-Cone SR \oplus Twist-4 $\oplus(\mu^2 = Q^2)$ BMS [PLB 578 (2004) 91]: $\lambda_q^2 = 0.4 \text{ GeV}^2$, $\delta_{\text{Tw-4}}^2 = 0.19(4) \text{ GeV}^2$

CZ DA excluded <u>at least</u> at 4σ -level! As DA – at 3σ -level.

NLC SR Results vs Revised CLEO Constrain

NLO Light-Cone SR \oplus Twist-4 $\oplus(\mu^2 = Q^2)$ BMS [PLB 578 (2004) 91]: $\lambda_q^2 = 0.4 \text{ GeV}^2$, $\delta_{\text{Tw-4}}^2 = 0.19(4) \text{ GeV}^2$

Even with 20% uncertainty in twist-4 CZ DA excluded <u>at least</u> at 4σ -level! As DA – at 3σ -level. Other NP models are near 3σ -boundary.

New CLEO data constraints for $\langle x^{-1} \rangle_{\pi}$

BMS [PLB 578 (2004) 91]: evolution to $\mu^2 = 1 \text{ GeV}^2$

$$\begin{split} \lambda_q^2 &= 0.4 \,\,\mathrm{GeV}^2, \\ \frac{1}{3} \langle x^{-1} \rangle_\pi^{\mathrm{SR}} - 1 &= 0.1 \pm 0.1 (\text{cyan-strip}) \end{split}$$

See also Bijnens&Khodjamirian [EPJC (2002)]: $\frac{1}{3}\langle x^{-1}\rangle_{\pi} - 1 = 0.24 \pm 0.16$

Again: Good agreement of a theoretical "tool" of different origin with CLEO data

Diffractive Dijet Production

What can add E791 data

E791: Diffractive dijet production

Frankfurt et al. [PLB (1993)]: Rough estimations Braun et al. [NPB (2002)]: Account for hard GEXs

E791: Good agreement with BMS bunch

E791 has poor accuracy in end-point region, but...

BMS vs CZ distribution amplitude

... BMS DA is end-point suppressed!

BMS vs CZ distribution amplitude

CZ DA: end-point enhancement

BMS vs CZ distribution amplitude

BMS bunch is 2-humped but end-point suppressed!

E791: Good agreement with BMS bunch

Our bunch of pion DAs has maximum uncertainty in the central region, but agrees well with E791 data!

[PLB 578 (2004) 91]

	DA	χ^2
	Asymp.	12.56
-	BMS bunch	10.96
	CZ	14.15
(accounting for 18 data points)		

Pion EM form factor

JLab data for pion EM FF and Analytic NLO pQCD

Naive Analytization
[Stefanis, Schroers, Kim, PLB 449 (1998) 299]

$$F_{\pi}^{\text{Fact}}(Q^2;\mu_{\text{R}}^2) = \bar{\alpha}_s^{(2)}(\mu_{\text{R}}^2) \,\mathcal{F}_{\pi}^{\text{LO}}(Q^2) + \frac{1}{\pi} \left[\bar{\alpha}_s^{(2)}(\mu_{\text{R}}^2) \right]^2 \mathcal{F}_{\pi}^{\text{NLO}}(Q^2;\mu_{\text{R}}^2)$$

Naive Analytization
[Stefanis, Schroers, Kim, PLB 449 (1998) 299]

$$F_{\pi}^{\text{Fact}}(Q^2;\mu_{\text{R}}^2) = \bar{\alpha}_s^{(2)}(\mu_{\text{R}}^2) \,\mathcal{F}_{\pi}^{\text{LO}}(Q^2) + \frac{1}{\pi} \left[\bar{\alpha}_s^{(2)}(\mu_{\text{R}}^2) \right]^2 \,\mathcal{F}_{\pi}^{\text{NLO}}(Q^2;\mu_{\text{R}}^2)$$

Maximal Analytization [Bakulev, Passek, Schroers, Stefanis, hep-ph/0405062]

$$F_{\pi}^{\text{Fact}}(Q^2;\mu_{\text{R}}^2) = \bar{\alpha}_s^{(2)}(\mu_{\text{R}}^2) \,\mathcal{F}_{\pi}^{\text{LO}}(Q^2) + \frac{1}{\pi} \left[\mathcal{A}_2^{(2)}(\mu_{\text{R}}^2) \right] \,\mathcal{F}_{\pi}^{\text{NLO}}(Q^2;\mu_{\text{R}}^2)$$

Strong dependence on scheme/scale setting!

Practical independence on scheme/scale setting!

Pion FF in analytic NLO pQCD

Green strip contains

- NLC QCD SRs uncertainties
- scale-setting ambiguities at NLO level

• QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.
- Comparing NLC SRs with new CLEO constraints allows to fix value of QCD vacuum nonlocality $\lambda_q^2 = 0.4 \text{ GeV}^2$.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.
- Comparing NLC SRs with new CLEO constraints allows to fix value of QCD vacuum nonlocality $\lambda_q^2 = 0.4 \text{ GeV}^2$.
- This bunch of pion DAs agrees well with E791 data on diffractive dijet production and with JLab F(pi) data on pion EM form factor.

- QCD SR method with NLC for pion DA gives us admissible sets (bunches) of DAs for each λ_q value.
- NLO LCSR method produces new constraints on pion DA parameters (a_2, a_4) in conjunction with CLEO data.
- Comparing NLC SRs with new CLEO constraints allows to fix value of QCD vacuum nonlocality $\lambda_q^2 = 0.4 \text{ GeV}^2$.
- This bunch of pion DAs agrees well with E791 data on diffractive dijet production and with JLab F(pi) data on pion EM form factor.
- APT with non-power NLO for pion EM form factor diminishes scale-setting ambiguities already at NLO level, rendering still higher-order corrections virtually superfluous.

Modelling NLC.

- Modelling NLC.
- Updating the case of ρ -meson.

- Modelling NLC.
- Updating the case of ρ -meson.
- Skewed distributions (at least for $x > \xi$).

- Modelling NLC.
- Updating the case of ρ -meson.
- Skewed distributions (at least for $x > \xi$).
- Nucleon?

- Modelling NLC.
- Updating the case of ρ -meson.
- Skewed distributions (at least for $x > \xi$).
- Nucleon?

Just for information:

We used **LATEX** to generate this report. Details:

- install class prosper in your LATEX
- $\textbf{ ben } {ET}_{E}X \to {DviPS} \to {Ps2Pdf} \\$