Аннотация

Б1.В.ДВ.1. Методы физического эксперимента. **Ч.2.** (Модуль Вариативная часть. Дисциплина по выбору)

Цели и задачи изучения дисциплины (модуля)

Цель курса - формирование у студентов навыков самостоятельной работы при осуществлении физических исследований. Дисциплина направлена на создание у обучающихся представления о сфере применимости и возможных ограничениях применения важнейших методов исследования, на ознакомление с процессами интерпретации и оценки полученных экспериментальных данных. Студент должен научиться оптимальному выбору методов для решения поставленных задач и формулированию аргументированного заключения на основании анализа и сопоставления всей совокупности полученных данных.

Задачи дисциплины: Расширить объем знаний учащихся, касающихся принципов и методов проведения физического эксперимента, полученных ранее из курса общей физики, дать представление о современном состоянии изучаемой дисциплины, ее связи с другими научными дисциплинами и тенденциях развития. Рассмотреть основные экспериментальные возможности и теоретические подходы, особенности применения знаний из области оптики, атомной физики, квантовой механики, физики твердого тела для анализа и описания наблюдаемых явлений. Дать анализ современных методов физического эксперимента, а также пути развития и совершенствования методов исследования природы и материи.

Требования к результатам освоения дисциплины (модуля):

В результате усвоения дисциплины учащиеся должны обладать следующими профессиональными компетенциями:

- способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1);
- способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта (ПК-2).

В результате изучения курса студенты будут:

Знать: принципы действия основных методов исследования в физическом эксперименте, структуру приборной базы, характерной для каждого метода

Уметь: дать характеристику физическому явлению и процессу, используя физическую научную терминологию; дать формулировку основных физических закономерностей, наблюдаемых в эксперименте;

Владеть: навыками, позволяющими применить для описания физического явления известную физическую модель.

Объем дисциплины (модуля) и виды учебной работы:

Вид учебной работы	Всего	Семестры				
	часов / зачетных	6				
	единиц					
Аудиторные занятия (всего)	180/5	180/5				
В том числе:						

Лекции (Л))		18/0,5	18/0,5		
Практические занятия (ПЗ)		18/0,5	18/0,5		
КСР		36/1	36/1		
Самостоятельная работа (всего)		108/3	108/3		
В том числе:					
Реферат (при наличии)					
Вид промежуточной аттестации (зачет)		экзамен	экзамен		
Контактная работа (всего)					
Общая трудоемкость	часы	180	180		
	зачетные единицы	5	5		

Краткая характеристика содержания учебной дисциплины:

Объекты физического эксперимента. Получение нанообъектов исследования. Получение объектов методом диспергирования. Методы анализа состава исследуемого вещества. Масс-спектрометрия. Методы микроскопии. Моделирование объектов исследования. Методы формирования новых свойств вещества. Дефекты в кристаллах. Образование дефектов при импульсном лазерном облучении Применение вакуума в физическом эксперименте. Применение криогенных температур в физическом эксперименте. Тепловые и газоразрядные источники излучения. Методы регистрации световых потоков. Элементы техники оптической спектроскопии. Воздух как оптическая среда. Перспективы развития и совершенствования методов физического эксперимента.

Форма промежуточной аттестации: экзамен

Разработчик: кандидат физ.-мат. наук., доцент кафедры общей и экспериментальной физики H.T.Максимова