АННОТАЦИЯ

Б1.В.ДВ.7.1 «Лазерная спектроскопия»

1. Цели и задачи дисциплины

Курс «Лазерная спектроскопия» предназначен для того, чтобы познакомить студентов с теоретическими основами взаимодействия света и вещества, актуальными для лазерной спектроскопии, включая метод матрицы плотности, с экспериментальными методами современной лазерной спектроскопии, включая линейную и нелинейную спектроскопию поглощения, бездоплеровскую спектроскопию, люминесцентную спектроскопию с временным разрешением, спектроскопию комбинационного рассеяния, спектроскопию одиночных квантовых систем, с направлениями развития и приложениями лазерной спектроскопии. Студенты должны получить знания, позволяющие им использовать методы и средства лазерной спектроскопии в своих исследованиях в области конденсированного состояния и в других разделах физики.

2. Место дисциплины в структуре ОПОП

Дисциплина «Лазерная спектроскопия» входит в модуль **Б1.В.ДВ.7.1**, относящийся к вариативной части цикла Б1 основной образовательной программы по направлению: **03.03.02 Физика, профиль "Физика конденсированного состояния".** Данный спецкурс связан со спецкурсом по атомной и молекулярной спектроскопии, который является вводным курсом к этой дисциплине, а с другой стороны имеет самостоятельное значение для углубленного изучения современных методов и принципов лазерной спектроскопии.

Для успешного усвоения курса лазерной спектроскопии требуется знание курсов оптики, квантовой механики, лазерной физики, методов математического анализа и математической физики, теории функций комплексного переменного и других.

3. Требования к результатам освоения дисциплины:

В результате изучения дисциплины студенты должны усвоить:

- Основные разделы лазерной спектроскопии;
- Ознакомиться с методами и приборами лазерной спектроскопии;
- Иметь представление о современном состоянии дисциплины, проблемах и тенденциях развития.

Процесс изучения дисциплины направлен на формирование **следующих компетенций:**

- способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3).
- способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1);
- способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта (ПК-2).

4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)

Вид учебной работы	Всего	Семестры			
	часов /	7	-	-	-
	зачетных				
	единиц				
Аудиторные занятия (всего)	54/1,5	54/1,5	-	-	-
В том числе:	-	-	-	-	-
Лекции			-	-	-
Практические занятия (ПЗ)	54/1.5	54/1.5	-	-	-
Лабораторные работы (ЛР)	-	-	-	-	-
Контроль самостоятельной работы (КСР)			-	-	-
Самостоятельная работа (всего)	54/1,5	54/1,5	-	-	-
В том числе:	-	-	-	-	-
Подготовка к аудиторным занятиям	54/1,5	54/1,5			
Изучение научной и специальной учебной литературы					
Домашние контрольные работы			-	-	-
Вид аттестации - зачет			-	-	-
Контактная работа:	59/1.64	59,4			
Общая трудоемкость часы	108	108	-	-	-
зачетные единицы	3	3	-	-	-

5. СОДЕРЖАНИЕ ПРОГРАММЫ

5.1 Содержание разделов и тем дисциплины

Раздел 1. Квантовомеханические основы взаимодействия света и вещества

- 1. Состояния квантовой системы. Оператор плотности. Его свойства.
- 2. Квантовомеханическое среднее значение операторов динамических величин.
- 3. Квантовое уравнение Лиувилля (уравнение Неймана).

- 4. Дифференциальные уравнения для диагональных и недиагональных элементов матрицы плотности.
- 5. Производные по времени от средних значений операторов динамических величин.

Раздел 2. Квантовая система в электромагнитном поле

- 6. Гамильтониан атома в электромагнитном поле. Мультипольное разложение.
- 7. Правила отбора по четности для переходов разной мультипольности.
- 8. Уравнения движения для электрического дипольного перехода.
- 9. Учет ориентаций квантовых систем. Усреднение по ориентациям. Уравнение второго порядка для электрической поляризации среды в поле электромагнитного излучения.
- 10. Уравнение для разности населенностей.
- 11. Волновое уравнение с учетом потерь, не связанных с рассматриваемым переходом. Система дифференциальных уравнений, описывающих взаимодействие света и вещества.

Раздел 3. Резонансные процессы

- 12. Резонансные процессы взаимодействия света и вещества. Электрическая восприимчивость. Поглощение и дисперсия. Лоренцева форма спектральной линии.
- 13. Закон Бугера-Ламберта-Бера. Коэффициент поглощения, ширина спектральной линии. Значение функции формы в максимуме. Сечение поглощения. Сила осциллятора и правило сумм Томаса-Кюна.
- 14. Однородное и неоднородное уширение. Эффект Доплера. Ширина допплеровски уширенной линии. Функция Гаусса формы спектральной линии.

Раздел 4. Некоторые методы лазерной спектроскопии

- 15. Насыщение поглощения. Параметр насыщения. Форма лоренцевой линии при насыщении. Пассивные насыщающиеся оптические затворы.
- 16. Импульсная инверсия населенностей в двухуровневой среде.
- 17. Спектроскопия атомных и молекулярных пучков.
- 18. Резонансы насыщенного поглощения.
- 19. Метод разнесенных оптически полей.
- 20. Двухфотонная лазерная спектроскопия.
- 21. Резонансы поглощения и испускания холодных частиц, захваченных в ловушках.
- 22. Лазерная спектроскопия спонтанного и вынужденного комбинационного рассеяния.
- 23. Спектроскопическая идентификации частиц по характеристикам квантовых траекторий интенсивности одночастичной фотолюминесценции.

Форма промежуточной аттестации: зачёт.

Разработчик: д.ф.-м.н., профессор кафедры общей и экспериментальной физики Е.Ф. Мартынович.